Critical Point Scans at RHIC Full Energy

Paul Stankus

"The QCD Critical Point Workshop"

INT, Aug 13, 2008

$n_{\rm B}/{\rm s}$ is a "figure of merit" for any isentropic trajectory

How much experimental control do we have?

Figure 2: Schematic view of the cooling paths on (a) $T - \mu$ and (b) log(s) - log(n) diagrams. In (a) those paths are zigzag-shaped lines with arrows, extended from the (red dashed) line of the initial points, to (blue dashed) line of the kinetic freezout. In (b) the same lines are a set of parallel straight lines.

"All thermodynamics is local"

Scaling Solution:

(not restricted to Bjorken hydrodynmaics)

Fluid at/near position z at some time

Fluid velocity at/near some rapidity *Y* at that time

$$\left(\frac{n_B}{S}\right)_{\text{Initial}} = \left(\frac{n_B}{S}\right)_{\text{Final}} \approx C \frac{n_B}{n_\pi} = C \frac{dN^B/dY}{dN^\pi/dY} = C \left(\frac{B}{\pi}\right)$$

BRAHMS PRL 94 (2005) 162301 BRAHMS PRL 93 (2004) 102301

RHIC Au+Au 200 GeV Central

Rapidity Scan

RHIC Au+Au 200 GeV Central

B/π

Every collision contains a scan!

Beam Energy Scan

$$\sqrt{s_{NN}} = 200 62 17$$

B/π

Asymmetric Beam Energies

A 100 AGeV + 10 AGeV collision has $\sqrt{s_{\text{NN}}} \approx 60$ GeV and $\Delta Y_{\text{CMS}} \approx 1.15$

200 100+10 62 17

B/π

Asymmetric Ion Collisions: N_{Part}

Asymmetric Ion Collisions: dN/dY

Asymmetric Ion Collisions: B/π

Under simple N_{Part} scaling, if $f = N_{Part1} / N_{Part2}$ then B/π changes by a factor of 2/(1+f) relative to symmetric collisions.

Shifting π 's relative to B's

→	+0.3
250	
200	$\setminus \pi$
150	\
/	
100	
50	В
-6 -4 -2	2 4 6

	$N_{ m Part}^1$	$N_{ m Part}^2$	$\Delta Y_{ ext{Part}}$
Au+Au	194	194	0
Cu+Au	64	115	0.3
Si+Au	28	67	0.44

Summary:

- 1. For isentropic evolution, n_B/s is conserved for a fluid element. We can approximate n_B/s for a fluid element by B/π at some rapidity Y in the final state.
- 2. At full RHIC energy B/π is a strong function of rapidity, varying over a factor of $\times 20$ from Y=0 to Y=4. Effectively every collision contains a scan in n_B/s .
- 3. Beam energy scans from top RHIC to top SPS vary B/π by about a factor of ×10 at mid-rapidity. Asymmetric beam energy collisions can shift the B/π pattern significantly.
- 4. Asymmetric ion collisions at RHIC are of fundamental interest for many reasons but don't provide much leverage in B/π , under simple assumptions.